A new type of electric vehicle power using “refillable” technology has taken another giant leap in advancing alternative energy with testing that shows it could provide enough energy to run a car for about 3,000 miles.
The technology employs a novel type of “flow” battery that is being successfully tested in golf carts and industrial vehicles such a forklifts. It was first showcased in 2017.
“The jump that this technology has made in the past two years is a testament to its value in changing the way we power our vehicles,” said John Cushman, Purdue University distinguished professor of earth, atmospheric and planetary sciences and a professor of mathematics. “It’s a game-changer for the next generation of electric cars because it does not require a very costly rebuild of the electric grid throughout the US. Instead, one could convert gas stations to pump fresh electrolyte and discard depleted electrolyte and convert oil-changing facilities to anode replacing stations. It is easier and safer to use and is more environmentally friendly than existing battery system.”
The technology uses a patented technology that is safe and affordable for recharging electric and hybrid vehicle batteries by replacing the fluid in the batteries about every 300 miles through a process similar to refueling a car at a gas station. Every 3,000 miles, the anode material is replaced, taking less time than is needed to do an oil change and costing about the same with an estimated cost of about $65.
Cushman and Eric Nauman, professor in mechanical engineering and in basic medical sciences, co-founded IFBattery Inc. to commercialize the technology.
“The battery does two things: it produces electricity and it produces hydrogen. That is important because most hydrogen-powered cars run on a 5,000 or 10,000 PSI [pounds per square inch] tank, which can be dangerous,” said Michael Dziekan, senior engineer for IFBattery. “This system generates hydrogen as you need it, so you can store safe hydrogen at pressures of 20 or 30 PSI instead of 10,000.”
The flow battery technology was first tested in scooters and then larger off-road vehicles. The next step will be industrial equipment and then automobiles, according to Cushman.
Technology using a membrane-free, flow battery is showing success in powering golf carts and industrial vehicles such as forklifts. Credit: Purdue University
“Historically, flow batteries have not been competitive because of the low energy density,” Cushman said. “For example, conventional flow batteries have an energy density of about 20 watt hours per kilogram. A lithium-ion battery run on 130 or 140 watts per kilogram. Our flow battery has the potential to run between five and 10 times that amount.”Cushman will present the technology at the 11th annual meeting of InterPore in Valencia Spain, in May 2019 and he previously presented at the International Society for Porous Media 9th International Conference in Rotterdam, Netherlands and its 10th International Conference in New Orleans.
“Conventional electric cars like Tesla have lithium-ion batteries that are usually plugged in overnight. Our flow battery uses a water-based single fluid that can run the car like it is a gas engine except it is not burning anything – it’s like a hybrid of a battery and a gas,” Nauman said.
Without using a membrane or separator, the single-fluid technology oxidizes the anode to produce electrons, and through a reduction at the cathode, it generates the current of energy to power vehicles. The oxidant is a macro-molecule that lives in the electrolyte, but is reduced only at the cathode.
“We are at the point now where we can generate a lot of power. More power than you would ever guess could come out of a battery like this,” Cushman said.
The spent battery fluids or electrolytes can be collected and taken to a solar farm, wind turbine installation or hydroelectric plant for recharging.
“It is the full circle of energy with very little waste,” Cushman said. “IFBattery’s components are safe enough to be stored in a family home, are stable enough to meet major production and distribution requirements and are cost-effective.”
Dr. Elisa Ferre, senior lecturer in psychology, and Maria Gallagher, lead author and Ph.D. student, both from Royal Holloway, investigated how alterations in gravity changed decision making.
Astronauts are primarily trained in physical fitness and given the right equipment, but are rarely proficient in how their brain functions will work millions of miles away from earth, when making decisions away from the comfort of terrestrial gravity.
The experiment saw participants take part in Random Number Generation task where they were upright, with the natural pull of gravity around them, and asked to shout out a random number between one and nine every time they heard a beep. This was then repeated, but with the participant laying down which manipulates the gravity.
When sitting up, the participant was able to shout out a different random sequence of numbers, but when lying down, and thus not within the natural force of gravity, things started to change.
Maria Gallagher explained: “We found decreased randomness in the sequence of numbers when participants were laying down: participants started to repeat the same number they shouted out before and the random choices they made almost ceased.”
Dr. Elisa Ferre said: “With the 50th anniversary of the Apollo Landing, we are getting ever closer to the new space age we have all imagined, which is very exciting.
“However, whilst the physical training and incredible equipment is given to astronauts, research in decision-making when we’re away from terrestrial gravity is little known, and our findings show that altered gravity might affect the way in which we make decision.
“This is incredibly important and we need to fix this.
“With the prospect of people going up into space, whether as a trained astronaut or in the near future, civilian passengers, it can take few minutes for any transition messages to get from the spacecraft to Houston, so being able to make decisions promptly, concisely and on-the-spot without any outside help, is of paramount importance.”
Making the correct decision is vital in high-pressured environments, such as space travel, remarked upon by Canadian Astronaut Chris Hadfield, ‘Most of the time you only really get one try to do most of the critical stuff and the consequences are life or death.’
During spaceflight, astronauts are in an extremely challenging environment in which decisions must be made quickly and efficiently.
To ensure crew well-being and mission success, understanding how cognition is affected by gravity is vital.
Imagine using machine learning to ensure that the pieces of an aircraft fit together more precisely, and can be assembled with less testing and time. That is one of the uses behind new technology being developed by researchers at Purdue University and the University of Southern California.
“We’re really taking a giant leap and working on the future of manufacturing,” said Arman Sabbaghi, an assistant professor of statistics in Purdue’s College of Science, who led the research team at Purdue with support from the National Science Foundation. “We have developed automated machine learning technology to help improve additive manufacturing. This kind of innovation is heading on the path to essentially allowing anyone to be a manufacturer.”
The technology addresses a current significant challenge within additive manufacturing: individual parts that are produced need to have a high degree of precision and reproducibility. The technology allows a user to run the software component locally within their current network, exposing an API, or programming interface. The software uses machine learning to analyze the product data and create plans to manufacture the needed pieces with greater accuracy.
“This has applications for many industries, such as aerospace, where exact geometric dimensions are crucial to ensure reliability and safety,” Sabbaghi said. “This has been the first time where I’ve been able to see my statistical work really make a difference and it’s the most incredible feeling in the world.”
The researchers have developed a new model-building algorithm and computer application for geometric accuracy control in additive manufacturing systems. Additive manufacturing, commonly known as 3-D printing, is a growing industry that involves building components in a way that is similar to an inkjet printer where parts are ‘grown’ from the building surface.
Additive manufacturing has progressed from a prototype development tool to one that can now offer numerous competitive advantages. Those advantages include shape complexity, waste reduction and potentially less expensive manufacturing, compared to traditional subtractive manufacturing where the process involves starting with the raw material and chipping away at it to produce a final result.
Wohlers Associates estimates that additive manufacturing is a $7.3 billion industry.
“We use machine learning technology to quickly correct computer-aided design models and produce parts with improved geometric accuracy,” Sabbaghi said. The improved accuracy ensures that the produced parts are within the needed tolerances and that every part produced is consistent and will perform that same way, whether it was created on a different machine or 12 months later
University of Maryland researchers have created a fabric that can automatically regulate the amount of heat that passes through it. When conditions are warm and moist, such as those near a sweating body, the fabric allows infrared radiation (heat) to pass through. When conditions become cooler and drier, the fabric reduces the heat that escapes. The development was reported in the February 8, 2019 issue of the journal Science.
The researchers created the fabric from specially engineered yarn coated with a conductive metal. Under hot, humid conditions, the strands of yarn compact and activate the coating, which changes the way the fabric interacts with infrared radiation. They refer to the action as “gating” of infrared radiation, which acts as a tunable blind to transmit or block heat.
“This is the first technology that allows us to dynamically gate infrared radiation,” said YuHuang Wang, a professor of chemistry and biochemistry at UMD and one of the paper’s corresponding authors who directed the studies.
The base yarn for this new textile is created with fibers made of two different synthetic materials—one absorbs water and the other repels it. The strands are coated with carbon nanotubes, a special class of lightweight, carbon-based, conductive metal. Because materials in the fibers both resist and absorb water, the fibers warp when exposed to humidity such as that surrounding a sweating body. That distortion brings the strands of yarn closer together, which does two things. First, it opens the pores in the fabric. This has a small cooling effect because it allows heat to escape. Second, and most importantly, it modifies the electromagnetic coupling between the carbon nanotubes in the coating.
University of Maryland Chemistry and Biochemistry Professor YuHuang Wang (left) and Physics Professor Min Ouyang hold a swatch of their new fabric that can automatically adjust its insulating properties to warm or cool a human body. Credit: Faye Levine, University of Maryland
“You can think of this coupling effect like the bending of a radio antenna to change the wavelength or frequency it resonates with,” Wang said. “It’s a very simplified way to think of it, but imagine bringing two antennae close together to regulate the kind of electromagnetic wave they pick up. When the fibers are brought closer together, the radiation they interact with changes. In clothing, that means the fabric interacts with the heat radiating from the human body.”
Depending on the tuning, the fabric either blocks infrared radiation or allows it to pass through. The reaction is almost instant, so before people realize they’re getting hot, the garment could already be cooling them down. On the flip side, as a body cools down, the dynamic gating mechanism works in reverse to trap in heat.
“The human body is a perfect radiator. It gives off heat quickly,” said Min Ouyang, a professor of physics at UMD and the paper’s other corresponding author. “For all of history, the only way to regulate the radiator has been to take clothes off or put clothes on. But this fabric is a true bidirectional regulator.”
According to the Science paper, this is first textile shown to be able to regulate heat exchange with the environment.
Scientists from ITMO in collaboration with international colleagues have proposed new DNA-based nanomachines that can be used for gene therapy for cancer. This new invention can greatly contribute to more effective and selective treatment of oncological diseases. The results were published in Angewandte Chemie.
Gene therapy is considered one of the promising ways of treating oncological diseases, even though the current approaches are far from perfect. Oftentimes, the agents fail to discern malignant cells from healthy ones, and are bad at interacting with folded RNA targets.
In order to solve this issue, scientists, including a Russian team from ITMO University headed by professor Dmitry Kolpashchikov, proposed special nanomachines. They sought to develop particular molecules, deoxyribozymes, which can interact with targeted RNA, bind them, unfold and cleave. According to the idea, these nanomachines have to recognize DNA oncomarkers and form complexes that can break down messenger RNA of vital genes with high selectivity, which will then result in apoptotic death of malignant cells.
The researchers tested the efficiency of the new machines in a model experiment and learned that they can cleave folded RNA molecules better than the original deoxyribozymes. They showed that the design of the nanomachine makes it possible to break down targeted RNA in the presence of a DNA oncomarker only, and the use of RNA-unfolding arms provides for better efficiency. The scientists also learned that the nanomachine can inhibit the growth of malignant cells, though cellular experiments didn’t show high specificity. The researchers associate this result with a possibly poor choice of the RNA target and a low stability of DNA structures in the cell.
The new approach differs fundamentally from the ones used before. The existing gene therapy agents are aimed at suppressing the expression of oncological markers. In the research in question, the scientists focused on the messenger RNA of vital genes, and the oncological marker was used as an activator. This makes it possible to apply the DNA nanomachine in treating any kind of cancer by using new DNA oncomarkers for activating the breakdown of targeted molecules.
The new invention opens new ways of treating oncological diseases. Still, there are many experiments to be conducted before it can be applied in therapy.
“For now, we are trying to introduce new functional elements in the framework that will contribute to a more effective recognition of oncological markers, and are also optimizing the DNA nanomachine for various RNA targets. In order to improve the efficiency and selectiveness of our constructions in cellular conditions, we are selecting new RNA targets and studying the stability of DNA machines in cells, which we plan to improve with the help of already existing chemical modifications,” comments Daria Nedorezova, Master’s student at ITMO University.