MIT Researchers Build Functional Carbon Nanotube Microprocessor

Scientists at MIT built a 16-bit microprocessor out of carbon nanotubes and even ran a program on it, a new paper reports.

Silicon-based computer processors seem to be approaching a limit to how small they can be scaled, so researchers are looking for other materials that might make for useful processors. It appears that transistors made from tubes of rolled-up, single-atom-thick sheets of carbon, called carbon nanotubes, could one day have more computational power while requiring less energy than silicon.

[…]

the MIT group, led by Gage Hills and Christian Lau, has now debuted a functional 16-bit processor called RV16X-NANO that uses carbon nanotubes, rather than silicon, for its transistors. The processor was constructed using the same industry-standard processes behind silicon chips—Shulaker explained that it’s basically just a silicon microprocessor with carbon nanotubes instead of silicon.

The processor works well enough to run HELLO WORLD, a program that simply outputs the phrase “HELLO WORLD” and is the first program that most coding students learn. Shulaker compared its performance to a processor you’d buy at hobby shop to control a small robot.

[…]

A small but notable fraction of carbon nanotubes act like conductors instead of semiconductors. Shulaker explained that study author Hills devised a technique called DREAM, where the circuits were specifically designed to work despite the presence of metallic nanotubes. And of course, the effort relied on the contribution of every member of the relatively small team. The researchers published their results in the journal Nature today.

[…]

Ultimately, the goal isn’t to erase the decades of progress made by silicon microchips—perhaps companies can integrate carbon nanotube pieces into existing architectures.

This is still a proof-of-concept. The team still hasn’t calculated the chip’s performance or whether it’s actually more energy efficient than silicon—the gains are based on projections. But Shulaker hopes that the team’s work will serve as a roadmap toward incorporating carbon nanotubes in computers for the future.

Source: MIT Researchers Build Functional Carbon Nanotube Microprocessor

MIT Researchers Design Robotic Thread that navigates Human Brains to clear clots

Robotics engineers at MIT have built a threadlike robot worm that can be magnetically steered to deftly navigate the extremely narrow and winding arterial pathways of the human brain. One day it could be used to quickly clear blockages and clots that contribute to strokes and aneurysms

[…]

Strokes are a leading cause of death and disability in the United States, but relieving blood vessel blockages within the first 90 minutes of treatment has been found to dramatically increase survival rates of patients. The process is a complicated one, however, requiring skilled surgeons to manually guide a thin wire through a patient’s arteries up into a damaged brain vessel followed by a catheter that can deliver treatments or simply retrieve a clot. Not only is there the potential for these wires to damage vessel linings as they inch through the body, but during the process, surgeons are exposed to excess radiation from a fluoroscope which guides them by generating x-ray images in real-time. There’s a lot of room for improvement.

Using their expertise in both water-based biocompatible hydrogels, and the use of magnets to manipulate simple machines, the MIT engineers created a robotic worm featuring a pliable nickel-titanium alloy core with memory shape characteristics so that when bent it returns to its original shape. The core was then coated in a rubbery paste that was embedded with magnetic particles, which was then wrapped in an outer coating of hydrogels allowing the robotic worm to glide through arteries and blood vessels without any friction that could potentially cause damage.

The robot was tested on a small obstacle course featuring a twisting path of small rings guided by a strong magnet that could be operated at enough distance to be placed outside a patient. The engineers also mocked up a life-size replica of a brain’s blood vessels and found that not only could the robot easily navigate that obstacle but that there was also the potential to upgrade it with additional tools like a delivery mechanism for clot reducing drugs. They even successfully replaced the worm’s metal core with an optical cable, so that once it reached its destination, it could deliver powerful laser pulses to help remove a blockage.

The robot would not only make the post-stroke procedure faster and faster, but it would also reduce the exposure to radiation that surgeons often have to endure. And while it was tested using a manually operated magnet to steer it, eventually machines could be built to control the position of the magnet (MRI machines already surround patients in intense magnetic fields) with improved accuracy, which would in turn further improve and accelerate the robot’s journey through a patient’s body.

Source: MIT Researchers Designed this Robotic Worm to Burrow Into Human Brains

A bit unsure why the original article is so down on the concept and wants to frame it negatively, but oh well.

Irish Teen Wins 2019 Google Science Fair For Removing Microplastics From Water

An Irish teenager just won $50,000 for his project focusing on extracting micros-plastics from water.

Google launched the Google Science Fair in 2011 where students ages 13 through 18 can submit experiments and their results in front of a panel of judges. The winner receives $50,000. The competition is also sponsored by Lego, Virgin Galactic, National Geographic and Scientific American.

Fionn Ferreira, an 18-year-old from West Cork, Ireland won the competition for his methodology to remove microplastics from water.

Microplastics are defined as having a diameter of 5nm or less and are too small for filtering or screening during wastewater treatment. Microplastics are often included in soaps, shower gels, and facial scrubs for their ability to exfoliate the skin. Microplastics can also come off clothing during normal washing.

These microplastics then make their way into waterways and are virtually impossible to remove through filtration. Small fish are known to eat microplastics and as larger fish eat smaller fish these microplastics are concentrated into larger fish species that humans consume.

Ferreira used a combination of oil and magnetite powder to create a ferrofluid in the water containing microplastics. The microplastics combined with the ferrofluid which was then extracted.

After the microplastics bound to the ferrofluid, Ferreira used a magnet to remove the solution and leave only water.

After 1,000 tests, the method was 87% effective in removing microplastics of all sorts from water. The most effective microplastic removed was that from a washing machine with the hardest to remove being polypropylene plastics.

With the confirmation of the methodology, Ferreira hopes to scale the technology to be able to implement at wastewater treatment facilities.

This would prevent the microplastics from ever reaching waterways and the ocean. While reduction in the use of microplastics is the ideal scenario, this methodology presents a new opportunity to screen for microplastics before they are consumed as food by fish.

At 18 Ferreira has an impressive array of accomplishments. He is the curator at the Schull Planetarium, speaks 3 languages fluently, won 12 previous science fair competitions, plays the trumpet in an orchestra and has a minor planet named after him by MIT.

Source: Irish Teen Wins 2019 Google Science Fair For Removing Microplastics From Water