A team of researchers at the Gran Sasso Science Institute (GSSI) and Istituto Italiano di Technologia (IIT) have devised a mathematical approach for understanding intra-plant communication. In their paper, pre-published on bioRxiv, they propose a fully coupled system of non-linear, non-autonomous discontinuous and ordinary differential equations that can accurately describe the adapting behavior and growth of a single plant, by analyzing the main stimuli affecting plant behavior.
Recent studies have found that rather than being passive organisms, plants can actually exhibit complex behaviors in response to environmental stimuli, for instance, adapting their resource allocation, foraging strategies, and growth rates according to their surrounding environment. How plants process and manage this network of stimuli, however, is a complex biological question that remains unanswered.
Researchers have proposed several mathematical models to achieve a better understanding of plant behavior. Nonetheless, none of these models can effectively and clearly portray the complexity of the stimulus-signal-behavior chain in the context of a plant’s internal communication network.
Read more at: https://phys.org/news/2019-01-mathematical-approach-intra-plant.html#jCp
Source: A mathematical approach for understanding intra-plant communication
Robin Edgar
Organisational Structures | Technology and Science | Military, IT and Lifestyle consultancy | Social, Broadcast & Cross Media | Flying aircraft